	太陽電池の種類と特徴の比較							- 餘社団法人 - 総社団法人 - 神縄CO2削減推進協議会 Olinawa CO2 Reduction Promotion Colorence	AND REPORTED IN
接触型 持線型 余松樹型 余松樹型 (広志を含まない) 存機需性 年間・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田			物質(元素)						
新田 和田 和田 和田 和田 和田 和田 和田	項目		シリコン系(Si= ケイ素 、IV族) ※1			化合物系(2種類以上の 元素 を結合)※2			
単結晶型(c-Si) 多核晶型(p-Si) (c) (p) (p) (p) (p) (p) (p) (p) (p) (p) (p			結晶	a型	薄膜型	無機物系(炭素を含まない)			
お放			単結晶型(c-Si)	多結晶型(p-Si)		CdTe(II-VI族)	CIS/CIGS(I-III-VI族)	有機薄膜	1 下(次世代最有力)
18~22%程度	特徴		るため高価だが変換効率	にできたシリコン粒など を利用し作られるため、	ため多結晶シリコンより も低コストだが、変換効 率も低い、直射日光に弱	アメタル)を原材料と し、欧米を中心に普及、 日本ではイタイイタイ病	い波長を受光でき、低コ ストで変換効率も比較的	る。製造コストが安く、 現在研究が盛んに行われ	れ雨天や室内でも発電出 来るが、酸素、水分、温 度の外的影響を受けやす
高温時の出力低下が 15~20%低下する 11% 5% 5% 大きい 5% 長い 便以い 使以い 原外中 中 中 中 中 中 小 (製造時に砂溶解に 2000°C でポリシリコン溶解に 2000°Cでポリシリコン溶解に 2000°Cでポリシリコン溶解に 2000°Cでポリシリコン溶解に 2000°Cでポリシリコン溶解に 350~550°Cで処理時間で 350~550°Cで処理時間で 350~550°Cで処理時間で 350~550°Cで処理時間で 350~550°Cで処理時間で 350~550°Cで処理時間で 350~550°Cで必要時間で 350~550°Cで必要時間で 350~550°Cで必要時間で 350~550°Cで必要時間で 350~550°Cで必要時間で 350~550°Cで必要時間で 350~550°Cで必要時間で 300~550°Cで必要時間で 300~50°Cで必要時間で 300~50°Cでを表で要はのでである 300~50°Cでを表で要はのでである 300~50°Cででを表で要はのでである 300~50°Cででを表で要はのでである 300~50°Cででを表でを表でを表でを表でを表でを表でを表でを表でを表でを表でを表でを表でを表	モジュール変換効率		18~22%程度	15~18%程度	10%前後	15~17%	15%程度	ラボレベル19%程度	
原材料の製造コスト 高い 中 低い 低い 低い 低い 低い 低い 低い 低い 東用化 ② ③ ③ ③ ③ ⑤ ⑤ ⑤ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥	発電素子の厚み		150~200 μ m		1μ m	3μ m程度	3 μ m	50nm	1μ m
実用化 ⑤ ⑥ ⑥ ⑥ 扇空に研究中 室内での発電 無理 出来る 少々 出来る 大きい 高い 中 中 中 中 小 小 がわれる 温暖化 第一次のででがあり、ション 溶解に (製造時に砂溶解に 2000°Cででが、シリコン溶解に 1400°Cの熱量が必要の為、製造コストが高く環境に相当悪い) (原材料の製造で薄膜の 2000°Cでも見く環境負荷 (は低い) (成膜工程を比較的低温 760°S50°Cで短時間で行 76.5 とができ、環境負荷 は低い) (低温製造の為環境負荷は低い) 100°C低温製造の為環境負荷は低い) 100°C低温製造の表現境域を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	高温時の出力低下が		15~20%低下する		11%	5%	5%	大きい	5%
室内での発電 無理 無理 出来る 少々 少々 出来る 大きい 高い 中 中 中 小 小 小 (製造時に砂溶解に2000°C でポリシリコン溶解に 2000°Cでポリシリコン溶解に 1400°Cの熱量が必要の為、製造コストが高く環境に相当悪い) 有害物質 第、アンチモン カドミウム パッファ層にカドミウム 無し が カドミウム に低い) 有害物質 かく 素 ケイ素 ケイ素と非結晶 「成のアルルTe リウムGa、セレンSe カラーン 15~25年 30年 300~250m 300~150mm 限界値 33% 33% 25% 31% 33% 21% 30~32% から のの 300~800mm 限界値 番目 サラス発電として使用 グラス発電として使用 グラス発電として使用 グラス発電として使用 次世代最有力候補	原材料の製造コスト		高い	中	低い	低い	低い	低い	低い
高い 高い 高い 高い 中 中 中 中 小 小 小 小 小 小	実用化		0	0	0	0	0	開発中	急速 に研究中
お料の	室内での発電		無理	無理	出来る	少々	少々	出来る	大きい
福暖化			高い	高い	中	中	中	小	小
主原料 ケイ素 ケイ素 ケイ素と非結晶 川族のカドミウムCdとVI 族のテルルTe 銅Cu、インジウムIn、ガリフェニレンピニレン、銅フタロシアニン、カーボ ンフラーレン CH3.NH3.Pb.l3有機物と無機物と無機物と無機物と無機物と無機物と表現のテルルTe 耐久性 現状 将来 20年~30年 20年~30年 45000 h 程度 15~25年 出力維持 長い 長い 長い 短い 長い 分光感度波長範囲 300~1150nm 300~750nm 510~900nm 300~1250nm 300~800nm 限界値 33% 33% 25% 31% 33% 21% 30~32% 備者 世界シェア82% 世界シェア14% 直射日光に弱い ガラス発電として使用 ガラス発電に使用 ガラス発電として使用 次世代最有力候補		影響度	でポリシリコン溶解に 1400℃の熱量が必要の為、 製造コストが高く環境に相	2000°Cでポリシリコン溶解に1400°Cの熱量が必要の為、製造コストが高く	為200°Cで良く環境負荷	の400~650℃で短時間で 行うため環境負荷は低	350~550°Cで短時間で行うことができ、環境負荷	低温製造の為環境負荷	
主原料 ケイ素 ケイ素 ケイ素 ケイ素と非結晶 II 族のカドミウム Cd と VI 族のテルルTe 朝口タロシアニン、カーボ ソフラーレン 任日3.NH3.Pb.13有機物と無機物と無機物と無機物と無機物と無機物と無機物と無機物と無機物と無機物と無		有害物質		鉛、アンチモン		カドミウム	バッファ層に カドミウム	無し	鉛
村来	主原料		ケイ素	ケイ素	ケイ素と非結晶			銅フタロシアニン、カーボ	· ·
将来	耐力 州	現状		20年~30年	20年~31		-30年	45000 h 程度	15~25年
分光感度波長範囲300~1150nm300~750nm510~900nm300~1250nm300~800nm300~800nm限界値33%25%31%33%21%30~32%備考世界シェア82%世界シェア14%直射日光に弱いガラス発電として使用ガラス発電に使用ガラス発電として使用ガラス発電として使用グ世代最有力候補	将来		204-304			204-9304		15~20年	30年
限界値 33% 33% 31% 33% 21% 30~32% 備考 世界シェア82% 世界シェア14% 直射日光に弱い ガラス発電として使用 ガラス発電に使用 ガラス発電として使用 ガラス発電として使用 ガラス発電として使用 グ世代最有力候補	出力維持		長い	長い	中	長い	長い	短い	長い
備考 世界シェア82% 世界シェア14% 直射日光に弱い ガラス発電として使用 ガラス発電に使用 ガラス発電として使用 次 世代最有力候補	分光感度波長範囲		300~1150nm		300~750nm	510~900nm	300~1250nm	300~800nm	300~800nm
偏考 世界シェア82% 世界シェア14%	限界値		33%	33%	25%	31%	33%	21%	30~32%
	備考		世界シェア82%	世界シェア14%	直射日光に弱い				

^{※1、}シリコン結晶系には、他にタンデム構造(多接合型HIT:単結晶シリコンとアモルファスの異なる太陽電池を重ね合わせてた物ある。(モジュール変換効率20%以上)薄膜タンデム型もある。

^{※2、}無機物系には、他に、耐放射線性を有する宇宙船で使用する、相当高価なGaAsがある。(モジュール変換効率25%以上)

^{※3、}有機薄膜型には、他に色素増感太陽電池で電極の白金以外は非常に低価格な材料で製造可能ですが製品寿命などの課題に対する研究が行われている。(変換効率ラボレベル11%前後)

^{※4、}パッケージすることにより、寿命は延びるが、優位性(自由の曲げれる・薄くて軽い・安価など)が失われる恐れあり。